

Tri-service Convergence:

Sensors Open Systems Architecture (SOSA)

Embedded Tech Trends January 23, 2018

Dr. Ilya Lipkin (AFLCMC)

Summary

SOSA standard is real

- Consortium stood up
- All three services actively engaged
- Technology demonstrated in flight
- First draft approved

Industry application has begun

- Numerous acquisition programs lining up to use
- Participation in SOSA includes a broad range of industry and end user participation
- SOSA requirements are finding their way into DoD RFIs and RFPs
- All are invited to participate

Outline

Background

- Vision and scope
- What is a sensor system

SOSA organization overview

- Standing working groups and their purpose
- Bridging and ad hoc sub-committees

Current SOSA status

Stand up of an Open Group consortium and what does it mean

SOSA VISION/GOALS

Vision- Business/acquisition practices and a technical environment for sensors and C4ISR payloads that foster *innovation*, industry *engagement, competition*, and allow for *rapid fielding* of cost-effective capabilities and platform mission reconfiguration while *minimizing logistical* requirements

Open:

Vendor- and platform-agnostic open modular reference architecture and business model

Standardized:

Software, hardware, and electricalmechanical module interface standards

Harmonized:

Leverage existing and emerging open standards such as: FACE, OMS, SPIES, CMOSS, VICTORY, VITA

Aligned:

Consistent with DoD acquisition policy guidance

Cost Effective:

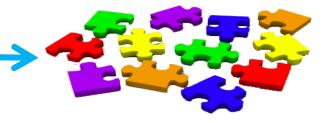
Affordable C4ISR systems including lifecycle costs

Adaptable:

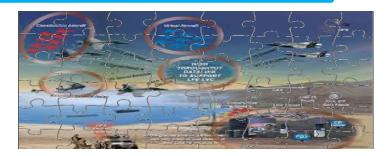
Rapidly responsive to changing user requirements

SOSA End Product

A set of **technical and business reference architectures**, IP **business case**, an acquisition strategy document, and a tailorable request for proposal (RFP) technical package

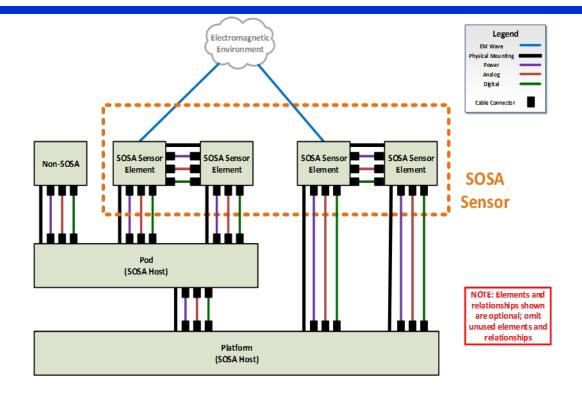


SOSA Vision

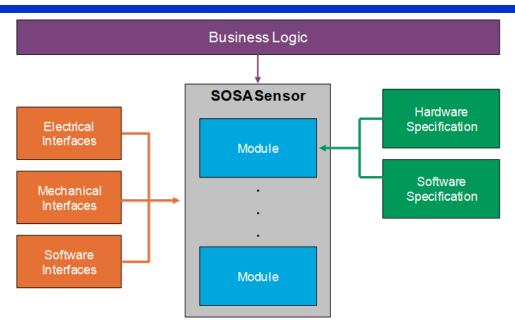

Current Mission Met Through Point Solutions and Workarounds

2. Decomposition into Common Functional Components

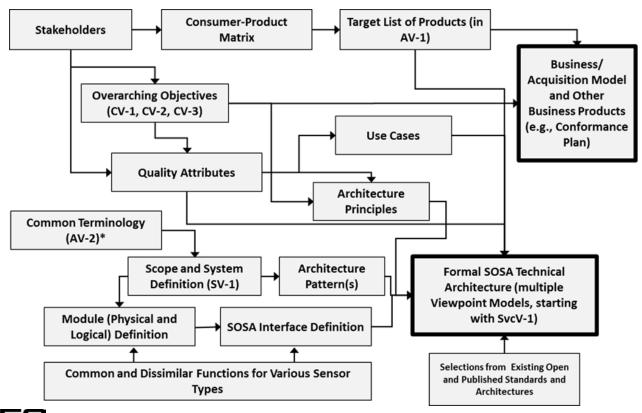
3. Recomposition Of Common Components into Reusable Capability Packages


4. Affordable Mission Effectiveness Through Systematic Reuse

What Constitutes a SOSA Sensor?



The Facets that Comprise a SOSA Module


• SOSA specifications are based on convergence of domains of knowledge for: business logic (market and government-driven forces), and technical (software, hardware, and electrical/mechanical interfaces).

Architectural Development Method

SOSA Approach

The SOSA initiative Will

- Address the challenges of affordable capability evolution for today's military community.
 - Part of the SOSA approach is to develop an Open Systems Architecture (OSA), captured in the SOSA
 Technical Standard that addresses software, hardware, and payload modules, and interfaces.

This OSA

 Is designed to promote portability and create product families across the sensor, Radar, SIGINT, EW, Electro Optical/Infra-Red (EO/IR), and Communications community.

The SOSA Technical Standard

• Is intended to promote the development of reusable sensor components applicable to a broad class of sensors and host platforms.

SOSA Approach

Another aspect of the SOSA approach is

 To develop an Open Business Model that addresses the needs of the acquisition community and ensures a strong industrial base.

It includes

Business processes to adapt the procurement to a MOSA reality, protect industry intellectual
property, and incentivize industry to invest in broadly applicable technologies that can be applied
to a wide variety of sensors.

SOSA Approach

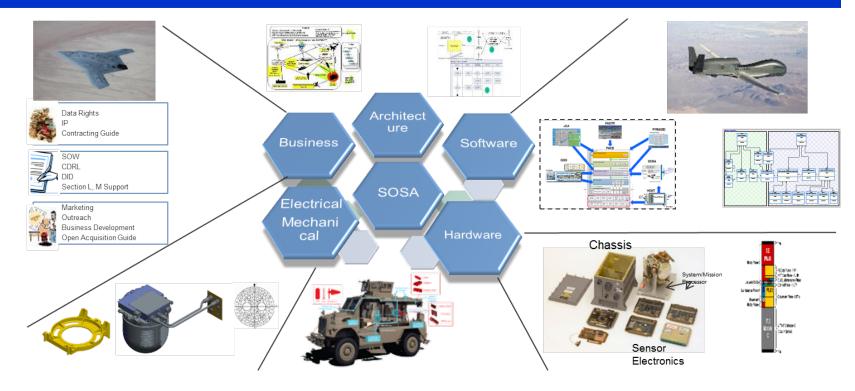
The SOSA approach allows "capabilities"

 To be developed as components that are exposed to other components through well-defined ("key") interfaces.

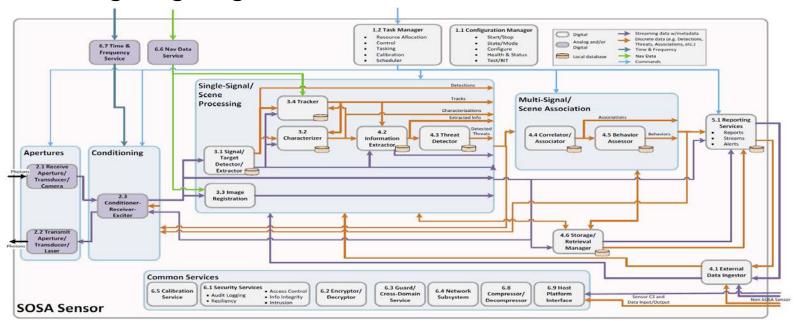
It also provides

For the reuse of capabilities across different environments.

The SOSA Technical Standard

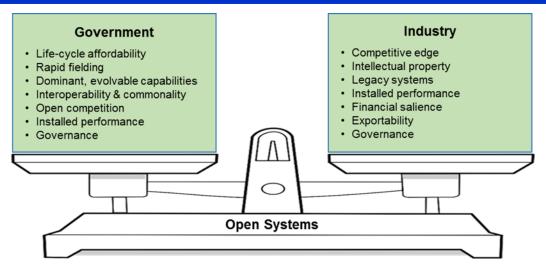

• Does not guarantee compliance with any safety certification standard, but instead provides all the necessary capabilities to achieve that in the implementation phase by the vendors.

SOSA Organization



SOSA Architecture

SOSA Targeting Single/Multi-INT Architecture

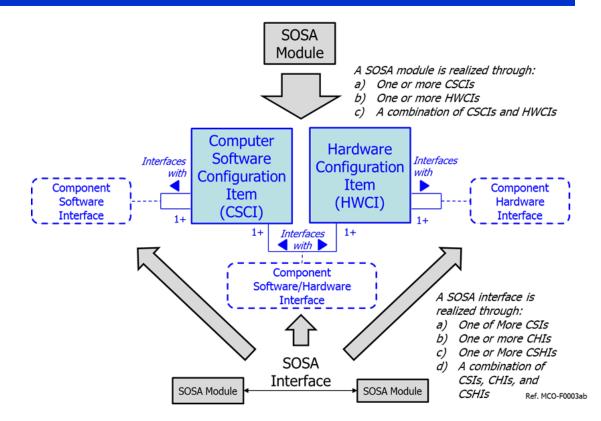

Each Module is Designed to be Competitively Procurable and Translatable to Selected OSA's

SOSA Business Initiative and Model

- Supporting development of Open Business Model for C4ISR
 - Developing with Industry/Government Collaboration Draft SOW, CDRLs, Section L/M sample language for procuring organizations
 - Open Systems Architecture (OSA) sample guide for the Industry partners
- Conformance / Compliance Policies
- Developing Marketing, Intellectual Property (IP) and Collaboration Strategies with OSA

SOSA Software View

The SOSA module interfaces (bottom of figure)


 Are realized as Component Software Interfaces, Component Hardware Interfaces, or Component Software/Hardware Components.

The Software/Hardware Component Interface

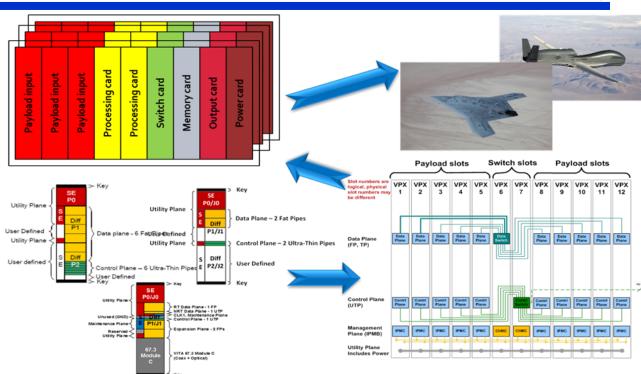
 Represents a low-level tie such as interrupts from the hardware and/or the shared register/memory.

The Component Hardware Interface

 Represents the low-level analog/electrical interface between Hardware Components, effectively the Physical Layer in the Open System Interconnect Reference Model (OSIRM).

SOSA Hardware & Electrical Mechanical OSA

The SOSA Electrical/Mechanical standard


 Will describe sensor pin outs for Class I and Class II sensors only.

Class III and Class IV sensors

 Do not have the physical space available to accommodate all signals outlined in the standard.

Future implementations of the standard

 Could include a limited subset of the standard that applies to Class III and IV sensors.

Enables Reuse of Sensors/Cards/Capabilities across programs and services

Current Status and Path Forward

- First Industry Day June 2015
- Formation of a consortium
 - Formed working group under FACE consortium November 2015
 - Independent Open Group Consortium stood up November 2017
- Snap shots/ DRAFT standard
 - First draft November 2017, released January 2018
 - Next draft planned September 2018
- Demonstrations
 - Executed successful SPOC demo July 2017
 - Next demo in planning targeting early fall 2018

